์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 |
- Time Series
- ๋ฐ์ดํฐ ํ์ฑ
- rag-fusion
- leetcode
- Non-Maximum Suppression
- ์ค์ฐจ์ญ์ ํ
- ์ด์ํ์ง
- ๋ฅ๋ฌ๋
- rag parsing
- ํ์ฑํํจ์
- gemma3
- fine tuning
- ์๊ณ์ด
- Mean squared error
- rrf
- qlora
- LLaVA
- visual instruction tuning
- ํฉ์ฑ๊ณฑ ์ ๊ฒฝ๋ง
- multi-query
- anomaly detection
- ํ์ธํ๋
- pdf parsing
- nlp
- LLM
- ํผ์ ํธ๋ก
- deep learning
- ํ์ฑํ ํจ์
- Cross Entropy Error
- ์์คํจ์
- Today
- Total
Attention, Please!!!
[Object Detection] NMS(Non-Maximum Suppression) ๋ณธ๋ฌธ
๐ก Non-Max Suppression์ด๋,
์ ๋ ฅ ์ด๋ฏธ์ง์ Object Detection ์๊ณ ๋ฆฌ์ฆ์ ์ํด bounding box regression์ด ์ ์ฉ๋๋ฉด, ์๋์ ๊ทธ๋ฆผ๊ณผ ๊ฐ์ด ๊ฐ์ฒด์ ์ฌ๋ฌ ๊ฐ์ bboxr๊ฐ ๊ทธ๋ ค์ง๋ฉฐ ๋ฌผ์ฒด์ ํ๋ฅ ๊ฐ์ ๊ฐ์ง๊ฒ ๋ฉ๋๋ค. ์ฌ๋ฌ ๊ฐ์ bbox ์ค ๊ฐ์ฅ ์ค์ฝ์ด๊ฐ ๋์ ๋ฐ์ค๋ง ๋จ๊ธฐ๊ณ ๋๋จธ์ง๋ฅผ ์ ๊ฑฐํ๋ ๊ฒ์ด Non-Maximum Suppression ์ด๋ผ๊ณ ํฉ๋๋ค. ์ด๋ฅผ ํตํด ๋ชจ๋ธ์ ๊ฐ๊ฒฐํ๊ฒ ํ๊ณ ์ค๋ถ๋ ๊ฒฐ๊ณผ๋ฅผ ์ ๊ฑฐํจ์ผ๋ก์จ ์ ํํ ๊ฐ์ฒด ํ์ง๋ฅผ ์ํํ ์ ์์ต๋๋ค.

๐ ๋์ ์๋ฆฌ
โ Object Detection ํ๋ณด๊ตฐ ์ถ์ถ : ๊ฐ์ฒดํ์ง ๋ชจ๋ธ์ ์ฌ์ฉํ์ฌ ์ ๋ ฅ ์ด๋ฏธ์ง์์ ๊ฐ์ฒด ํ๋ณด๊ตฐ์ ์ถ์ถํฉ๋๋ค. ์ด์ ๊ฐ ํ๋ณด ๊ฐ์ฒด์ ๋ํ ์ถ์์ ์ธ ์์น์ ํด๋น ๊ฐ์ฒด๊ฐ ์ด๋ค ํด๋์ค์ ์ํ๋์ง์ ๋ํ ํ๋ฅ ๊ฐ์ ๋ฐํํฉ๋๋ค. ์ฆ, Confidence ๊ฐ์ ์ถ์ถํ๋ค๊ณ ์๊ฐํ์๋ฉด ๋ฉ๋๋ค.
โก IoU(Intersection over Union) ๊ณ์ฐ ๋ฐ ์ ๋ ฌ : ๋ฐ์ค ๊ฐ์ ๊ฒน์น๋ ์์ญ์ ์ธก์ ํ๋ ์งํ์ด๋ฉฐ, ๊ณ์ฐ๋ IoU ๊ฐ์ ๋ฐ๋ผ ํ๋ณด ๊ฐ์ฒด๋ค์ ๋์ ์์๋๋ก ์ ๋ ฌํฉ๋๋ค. ์ฃผ๋ก IoU๊ฐ ๊ฐ์ฅ ๋์ ๊ฐ์ฒด๋ฅผ ์ ํํ๊ณ , ์ต์ข ๊ฐ์ฒด๋ก ์ค์ ํ๊ฒ ๋ฉ๋๋ค. ํ์ง๋ง ์ด๋ ๋ค๋ฅธ ๊ฐ์ฒด์ ๊ฒน์น๋ ๋ถ๋ถ์ด ์์ ์๋ ์์ด, ๋ค์๊ณผ ๊ฐ์ ๋จ๊ณ๋ฅผ ์งํํฉ๋๋ค.
โข ์๊ณ๊ฐ(threshold) ์ ์ฉ : ์ผ์ IoU ์๊ณ๊ฐ(์ฃผ๋ก 0.5)์ผ๋ก ์ค์ ํ์ฌ, ์ด ์๊ณ๊ฐ ์ด์์ผ๋ก ๊ฒน์น๋ ๊ฐ์ฒด๋ค์ ์ ๊ฑฐํฉ๋๋ค.
โฃ ๋ฐ๋ณต ๋ฐ ์ต์ข ๊ฐ์ฒด ๊ฒฐ์ : ๋ง์ฝ ์ ๋ ฅ ๋ฐ์ดํฐ์ ๋ค์ค ํด๋์ค๊ฐ ์กด์ฌํ๋ค๋ฉด, (1)~(3) ๋จ๊ณ๋ฅผ ๋ฐ๋ณตํฉ๋๋ค.
๐ก Soft NMS๋,

๊ธฐ์กด NMS๋ ๊ฐ์ฅ ๋์ Confidence ๊ฐ์ ๊ฐ์ง๋ bbox๋ฅผ ์ฐพ๊ณ , ๊ฐ์ ํด๋์ค์ธ bbox๋ค ์ค ๊ฒน์น๋ ์์ญ์ ์๊ณ๊ฐ์ด ์ด์์ด๋ผ๋ฉด ์ ๊ฑฐํ๋ ๊ฒ ์ ๋๋ค. ํ์ง๋ง ์ด์ ๊ฐ์ด ์๊ณ๊ฐ์ ์ค์ ํ๋ ๊ฒ์ ๋งค์ฐ ๋ณต์กํ๊ณ ๊น๋ค๋ก์ฐ๋ฉฐ mAP๊ฐ ๋ฎ์์ง๋ ๋ฌธ์ ๊ฐ ๋ฐ์ํ๊ฒ ๋ฉ๋๋ค. ์์๋ก ์ ๊ทธ๋ฆผ์์ Blueberry๋ฅผ ๊ฒ์ถํ๊ธฐ ์ํด 0.53 ~ 0.92 Confidence ๊ฐ์ด ์กด์ฌํฉ๋๋ค. ๊ฐ์ฅ ๋์ 0.92์ Blueberry๋ฅผ ์ ์ธํ๊ณ , ๋๋จธ์ง๋ ์ฌ๋ผ์ง๊ฒ ๋ฉ๋๋ค. ์ด๋ฌํ ๋ฌธ์ ์ ์ ํด๊ฒฐํ๊ธฐ ์ํด์ Soft-NMS๊ฐ ๊ณ ์๋์์ต๋๋ค.
Soft-NMS์ ์์ด๋์ด๋ ์๊ฐ๋ณด๋ค ๋จ์ํฉ๋๋ค. ๋์ IOU์ ๋์ confidence score๋ฅผ ๊ฐ์ง propsal์ ์์ ํ ์ ๊ฑฐํ์ง ์๊ณ IOU์ ๊ฐ์ ๋น๋กํ์ฌ proposal์ confidence๋ฅผ ์ค์ธ๋ค.
'Computer Vision' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
[Object Detection] One-stage detector(YOLO,SSD) (0) | 2024.03.25 |
---|---|
[Object Detection] mAP(Mean Average Precision) ํ๊ฐ์งํ (0) | 2024.03.20 |
[Object Detection] Slide Window & Selective Search ๊ฐ๋ (0) | 2024.03.16 |
[Object Detection] ๊ฐ๋ ์ ๋ฆฌ (0) | 2024.03.15 |
[Image Classification] ๊ฐ๋ ๊ณผ ์๊ณ ๋ฆฌ์ฆ(LeNet5~ResNet) ์ดํดํ๊ธฐ (1) | 2024.03.07 |